Abstrato

Comparative study of approximate entropy and sample entropy in EEG data analysis

Cao Rui, Li Li, Chen Junjie


ApEn and SampEn are widely adopted in the Biomedical Signal Processing in recent years. This paper makes a comparative study on the application of both in the analysis of EEG data. Theoretically, SampEn has higher accuracy and needs much less computation time thanApEn. Experiments based on two EEG data sets showthat SampEn can better classify different emotions and canmore accurately distinguish the alcoholismfromcontrols thanApEn. This study indicates that SampEn is more suitable to be used to analyze EEG data thanApEn, which has relatively high significance for the quantitative analysis of EEG.


Isenção de responsabilidade: Este resumo foi traduzido usando ferramentas de inteligência artificial e ainda não foi revisado ou verificado

Indexado em

  • CASS
  • Google Scholar
  • Abra o portão J
  • Infraestrutura Nacional de Conhecimento da China (CNKI)
  • CiteFactor
  • Cosmos SE
  • Biblioteca de Periódicos Eletrônicos
  • Diretório de indexação de periódicos de pesquisa (DRJI)
  • Laboratórios secretos de mecanismos de pesquisa
  • ICMJE

Veja mais

Flyer