Abstrato

Graph kernels and applications in protein classification

Jiang Qiangrong, Xiong Zhikang, Zhai Can


Protein classification is a well established research field concerned with the discovery ofmoleculeÂ’s properties through informational techniques. Graphbased kernels provide a nice framework combining machine learning techniques with graph theory. In this paper we introduce a novel graph kernel method for annotating functional residues in protein structures.Astructure is first modeled as a protein contact graph, where nodes correspond to residues and edges connect spatially neighboring residues. In experiments on classification of graphmodels of proteins, themethod based onWeisfeiler- Lehman shortest path kernel with complement graphs outperformed other state-of-art methods.


Isenção de responsabilidade: Este resumo foi traduzido usando ferramentas de inteligência artificial e ainda não foi revisado ou verificado

Indexado em

  • CASS
  • Google Scholar
  • Abra o portão J
  • Infraestrutura Nacional de Conhecimento da China (CNKI)
  • CiteFactor
  • Cosmos SE
  • Biblioteca de Periódicos Eletrônicos
  • Diretório de indexação de periódicos de pesquisa (DRJI)
  • Laboratórios secretos de mecanismos de pesquisa
  • ICMJE

Veja mais

Flyer